Kasuistika | Case report

Permanent pacemaker lead endocarditis due to *Staphylococcus hominis* and review of the literature

Suleyman Ercan¹, Gokhan Altunbas⁵, Fethi Yavuz⁴, Vuslat Bosnak⁶, Vedat Davutoglu⁴

¹ Departments of Cardiology, Gaziantep University, School of Medicine, Gaziantep, Turkey
² Department of Cardiology, Kilis State Hospital, Kilis, Turkey
³ Departments of Infectious diseases, Gaziantep University, School of Medicine, Gaziantep, Turkey

ARTICLE INFO

Article history:
Received: 21 June 2012
Received in revised form: 10 July 2012
Accepted: 11 July 2012
Available online: 20 July 2012

Keywords:
Lead endocarditis
Staphilococcus hominis
Transesophageal echocardiography

ABSTRACT

Use of intracardiac devices for heart diseases is increasing worldwide. One of the important complications of pacemakers is infective endocarditis from the leads as the source. In this case, we report a lead endocarditis caused by *Staphylococcus hominis* four years after the pacemaker implantation. A 50-year-old diabetic woman, who was implanted a permanent pacemaker four years ago, had complaints of fever and fatigue three months ago. On transesophageal echocardiography (TEE), a mobile mass resembling vegetation on the lead, which was 15×10 mm in diameter, was revealed. At the end of the second week of treatment, fever persisted and markers of inflammation remained elevated. Thus, the patient was referred for surgery, lead was extracted and a new epicardial lead was placed. The culture of the extracted material was positive for *Staphylococcus hominis*. Antibiotherapy was continued till the end of the postoperative sixth week accordingly. In conclusion, in patients with pacemakers and risk factors for endocarditis, fever must suggest lead endocarditis and TEE must be performed for accurate diagnosis. In addition to appropriate antibiotic therapy, extraction of infected material is needed for the cure.

© 2012, ČKS. Published by Elsevier Urban and Partner Sp. z o.o. All rights reserved.

Introduction

Use of intracardiac devices for heart diseases is increasing worldwide. The most frequently used implantable devices are cardiac pacemakers. One of the important complications of pacemakers is infective endocarditis from the leads as the source. Clinical findings of lead endocarditis are more subtle than that of native valve infective endocarditis and thus the diagnosis is frequently delayed. *Staphylococcus aureus* and *Staphylococcus epidermidis* are the most frequent causative agents responsible for lead endocarditis within the first six months after the implantation [1–3]. *S. hominis* is a natural inhabitant of the human skin flora and rarely reported as a cause of device related or prosthetic valve endocarditis [4]. In this case, we report a lead endocarditis caused by *S. hominis* four years after the pacemaker implantation and we will discuss the management of patients with lead endocarditis.

Case report

A 50-year-old diabetic woman, who was diagnosed with sick sinus syndrome and implanted a permanent pacemaker four years ago, had complaints of fever and fatigue three months ago. She was diagnosed with pneumonia and started empiric antibiotic treatment. Her complaints persisted despite treatment and she was admitted to infectious disease clinic and consulted with cardiology. Physical examination was normal except body temperature (38,5 °C) and tachycardia (110 bpm). Laboratory val-
Lead endocarditis can be seen early or late after pacemaker implantation. Early endocarditis is defined as occurring within the first six months after implantation and causative microorganisms are most likely *S. aureus* and *S. epidermidis* [2,5]. Despite the fact that blood culture positivity in these patients is less common than in patients with native valve endocarditis, Victor et al. [6] reported that blood cultures were positive in 85% of patients with vegetation. In our case, polymicrobial etiology was confirmed with positive blood cultures for *S. aureus* and extracted lead material culture for *S. hominis*. Review of the literature shows that only lead endocarditis caused by *S. hominis* was reported by Sünbül et al. [4]. Furthermore, it is important to notice that endocarditis emerged very late after pacemaker implantation.

There are different suggestions for the diagnosis of lead endocarditis but modified Duke Criteria are used, although they are less specific than for native valve endocarditis [7]. In addition, septic pulmonary emboli support the diagnosis. Our patient had both major criteria; blood culture positivity and echocardiographic findings.

In these patients, fever is the predominant symptom, just like in native valve endocarditis. Older and immunosuppressive patients may come up with a more silent clinical picture. Fever may emerge as subfebrile and sustained, or it can be septic in nature due to sepsis and chills can be seen together. In addition, by way of direct contact, the pacemaker generator site may become infected and local erythema, abscess, fistula into the skin, purulent discharge and phlebitis in associated veins may become evident [8,9].

Echocardiography is very important in the diagnosis of lead endocarditis. However, reviews suggest that TTE is inadequate. Victor et al. [6] evaluated 23 patients with lead endocarditis and found that TTE was capable of diagnosis in only 30% of patients, whereas TEE was able to diagnose 91% of the patient population. Additionally TEE may give detailed information about the tricuspid valve. A recent study showed that concomitant valve infection is associated with increased mortality [10]. Therefore, in patients with permanent pacemaker, evaluation of fever should always include a TEE examination.

Extraction of contaminated material should be the cornerstone of therapy in patients with lead endocarditis. Choo et al. [5] suggested that without extracting the infected material, the infection cannot be controlled even if correct antibiotics are used according to antibiogram result. Our case was also an example for this conclusion. Therefore, along with appropriate antibiotic treatment, the extraction of infected material is needed for therapy. There are two different techniques for lead extraction. The first one is direct percutaneous extraction and the other option is surgical thoracotomy. Percutaneous technique can be used if the vegetation is smaller than 10 millimeters and the tricuspid valve is not involved, the time from implantation is shorter than 1–2 years and the patient is not pacemaker dependent. In other situations, surgical extraction and placement of an epicardial lead must be considered [3,9].

In conclusion, in patients with pacemakers and risk factors for endocarditis, fever must suggest lead endocarditis and TEE must be performed for accurate diagnosis. In
addition to appropriate antibiotic therapy, extraction of infected material is needed for the cure.

References